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C O M P U T A T I O N  OF  U N S T E A D Y  F L O W  P A S T  

I N S T A N T A N E O U S L Y  S E T  IN M O T I O N  

V. I.  K r a v c h e n k o ,  Yu .  D. S h e v e l e v ,  
a n d  V. V. S h e h e n n i k o v  

A CYLINDER 

UDC 518 : 517.9 : 532 

w 1. The f i r s t  r e su l t s  on the solution of unsteady flow past a body of finite dimensions instantaneously 
set  in motion were  obtained within the f r amework  of the boundary- layer  theory .  

For  the initial flow stage the f i r s t  two t e r m s  of the power s e r i e s  expansion of the solution in the powers 
of t (t is time) were  obtained by Blasius in [1], the obtained solution being valid as Re --~ ~. 

The solution found by Blasius was improved in [2]. Subsequently, an at tempt was made to extend the 
Blasius solution to the case  of low Reynolds numbers  [3, 4]. 

The use of numer ica l  methods to solve nonsta t ionary Navier -S tokes  equations [5-10] turns  out to be a 
m o r e  promis ing  approach to the prob lem under investigation. In [10] a su rvey  of the l i t e ra tu re  on this subject  
is given. In the case  of suddenly ar is ing  motion of a cyl inder  one of the difficulties l ies in the formula t ion  of 
the initial conditions. 

It follows f r o m  the theory  of the boundary layer  [11] that the vor t ic i ty  of the fluid flow is infinitely large 
at the initial t ime instant and is then concent ra ted  in an infinitely thin region around the cyl inder  surface .  
The r e f o r e ,  a s t ra igh t forward  application of f in i te -d i f fe rence  approximations to the original  equations does not 
produce a c o r r e c t  pa t tern  of the initial flow past the cyl inder  [7]. Moreover ,  it was shown in [12] that to ob- 
tain in this case  a sa t i s fac to ry  approximate  solution v e r y  smal l  steps in t ime must be taken. 
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The f i r s t  c o r r e c t  formulat ion of the initial stage of a flow past  a cylinder which ls set instantaneously in 
motion appears  to have been proposed in [9, 10]; however,  the actual numer ica l  method used there  does not 
enable one either to es t imate  the e r r o r  in the obtained resu l t s  or to investigate the flow for longer durations.  

Using the numer ica l  method descr ibed here  one is able to compute i n a  unified manner the flow f r o m  the 
instant of impulsive s ta r t  up to and including the coming to res t .  

w 2. Let a c i r cu la r  cyl inder  be set  instantaneously in motion with velocity u perpendicular  to the cylinder 
axis. It is assumed that the flow past the cylinder is symmetr ica l .  The original  Nav ie r -S tokes  equations 
which descr ibe  the flow of a viscous incompress ible  fluid past the cylinder in the polar coordinate  sys t em (r, 0) 
in its dimensionless  f o r m  are  given by 

0co I 0~2 0o~ i a, 0co 2 (02r . t ~r . I o~o~ 
0--~ -~ r O0 Or r Or O0 ~- R-e-~-~r2 "~" - ' r - -~r  " ~ ' ' ~ " ~  ] ' 

i [ a [rOCk+ I a ~  (2.1) 

where  w is the vortex;  r is the flow function; and Re =u2R/~ is the Reynolds number ~ is the cylinder radius;  
is the kinematic viscosity).  

The boundary conditions are  given by 

, = O , O ~ / a r = O  for r ==t, t > 0 ;  

0~-~-0, ~ - ~ r  sin0 for r - + c o ,  t > 0 ;  (2.2) 
o--~0,  ~ = 0  for r--~co,  t = 0 ;  

~ = 0 ,  o 7 0  for 0 •0,  n , t ~ 0 .  

The s tar t ing  sys t em of equations (2.1) is now t rans fo rmed  by employing the following considerat ions in 
physics.  It is known [11] that in the case  of instantaneously ar is ing motion of a body the boundary layer  forming 
on the body is of a thickness which var ies  in t ime as 24-~'-/-R-~(the re la t ion  is valid for small  t). Moreover ,  
with the boundary layer  (or its vorticity) developing when the convection is the decisive t ransfer  mechanism of 
vor t ic i ty  and the layer  is of suitable thickness,  the thickness of the boundary layer  changes according to the 
law e et (c=1/2u)  [13]. 

Taking the above into account,  the following t ransformat ion  of the independent variables  is introduced: 

r = e~(~)~, 0 = ~1, (2.3) 
t = T(T), 

where  k('r) = 24~7~ ' r  the shapes of the functions cp (~) and T(~) are  shown in Fig. 1. To be able to el imi-  
nate the initial s ingular i ty  of the eddy function one introduces the normal ized eddy W and the normalized flow 
function by means of the formulas  
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By using (2.3) and (2.4), Eqs. (2.1) become 

where 

~, ~), o ) =  w(n, ~, ~)/~(~). 

2 ( t O~W OW k~('~) O~W) 
p (g) ._~ 2aE ak'('~) D(~,W)D (~, ~)" =R'e" 2affZ ~ Og ~ +Q(.~)~.~--(~+Q(.r)w-{- 2E ~ --0~2] , 

0 ~  . k~(~ ) O~'V 
E~W = ~- -~V + o-V" 

(2.4) 

(2.5) 

2•T dT Re k(v)k',c ('C) p(~)=k ); f~=-~-; Q(T)=T~; 
D (~ ,  W)ID (~1, ~) = (O~FIO~I) 0WI0~ --  (0TI0~) OWlOq; E = ne cmlc')r 

a being the constant pa ramete r .  The coefficients P and Q are  continuous functions of v. The t ransformat ion  
t = T(T) is chosen in such a way that the requ i red  condensation of the t ime scale is ensured at the neighborhood of 
t = 0 .  

If one takes into account (2.3) and (2.4), the boundary conditions (2.2) take the f o r m  

:: O, OT/O~ : 0 for [ -= 0, T >/0; 
arth('~) ~max 

W : O, OT/O~ = a~e sin~Yi for ~=~max,'r (2.6) 
W = 0 ,  ~ : 0  for ~ ] :0 ,1 ,  T>0, 

where ~ max is a suitably large value of ~. 

Equations (2.5) together with the boundary conditions (2.6) constitute a closed sys t em for the de termina-  
tion of W, ~I, for ~ > 0. 

~3. It can be shown that for v = 0 the sys t em (2.5) assumes  the self  consistent  fo rm 

(ll2r ~- -f- ~OWIO~ + W =- O, (3.1) 
W = (lla~ao')O~aglO~ "- 

with the boundary conditions 

T ' = 0 ,  0 T / 0 ~ = 0  for ~ = 0 ;  

W = O, OT/O~.= ctnsin ~1 for ~ = ~raax. 

The solution of the f i r s t  equation of (3.1) which sat isf ies  the conditions (3.2) can be represen ted  in the f o r m  

W = C (~) e -(~'~)'. 

To determine COD the second equation of (3.1) is integrated with respec t  to ~ yielding 

~max 

0 

2 (0~) _ 2  
C (~l) = ~ 0~- V~ sin ~1. 

~=~max 

(3.2) 

By using (3.2), one finds 

Thus 

W 0l, ~, 0) ---- ~ e -r sin n~ (3.3) 

is the requi red  initial condition for the eddy. 

The corresponding  initial condition for the flow function is easi ly found f rom the solution of the second 
equation of (3.1) by using (3.3). 

w 4. Let an orthogonal grid with subdivision steps h 1 =AT/, h2=A ~ , AT be defined in the integration region. 
The f ini te-difference scheme for the employed numer ica l  method is given by 
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i 
n - - - - m  m- -2  - 2 [ 

' Wij+l - -  W+) 
Pm 2A~ 2 aE2 

Ufzsm l~Tsrn v~n- - lm  2 pm ~ra W i j , iJ m l  = 
"" i j  - -  - - i j - - I  ~i-4-1j - - ' ~ i - - l j  1 km W i + l j - - W i j  - - ~  i - - l j  + i i - - I  

-}- 2hz 2hi , 2 a~  2 2 h  I -} 2h t ] 2h2 

/ 1 t 1 1 1 
t n - - ~ m  n--:Tra n - - ~ m  n - - -  4- m n - - ~ m  

-- Re2 _(x2a~E2j Wo+"t -- 2Wij -~ ~V iJ - - t  ~ -  Qm~-jwii+~ --2h2Wij--1 -~- 

, ) n- - - -m  k 2 I~n-- l rh  2tV~j + 27 W~ t l  W i  j 2 __.}V~)s- lm "" i + t j  - -  
+ ,~ W:'--~m " d ~ F " 

~ m  r, %7 X1 2Era1 t 

l [ 9 \  1 1 
n--'3-ra ( ~ 9 h~ } n - - -~m ~yn--5--m 2 2 2 nm 

q'~+~ - - 2  t + a'-'k~-7~. ~ , T ~  + ~--~ = ~z h z E , ~ W i j  - -  

2 1 
~ 2 h2 /~.en--lrn nm nm n - -  5.-m 

�9 , i j  ; - ~ ' ~ , . 3 ~ - ~ + + , ~  + ~ _ ~ j ) ;  W+~ = • ~ + ( l - •  

1 11---- m 
X31iYij 2 + (1 = - -  ~3) T i j  , 

(4.1) 

w h e r e  

W~'j ~ = W (ihl, ]h.,, mA~); ~}~+ = T (ihl, ]h,z, maz); 

Pm = P(max); Qm = Q(mA'Q; Emj  = a e ~ " ~ ;  
~.) = ]h2; k m =  k ( m h z ) ,  

(n is the i terat ion superscr ip t ;  x 1 is the r e g u l a r i z a t i o n  parameter ;  and ~ ,  w ,  are  re laxat ion  parame te r s ) .  
s u p e r s c r i p t s  r ,  s ,  p. q are  c h o s e n  depending on the s ign  of  

l t~n-- tm l ~ n - - l m  w n - - l r a  

in the fo l lowing manner:  

The 

s = n - - l / 2 ,  r : n - - t ,  q = n - -  I / 2 ,  p = n - -  I for 
s - - n - - t , r  = n - - t / 2 ,  q = n - - t , p  = n - - 1 / 2  for 

s =  n - -  l / 2 ,  r =  n - -  l ,  q = n - -  l ,  p = n - - 1 / 2  for 

s =  n - - l ,  r = n - - t / 2 ,  q = n - - l / 2 ,  p = n - - I  for 

u u / > 0 ,  v . />O;  

ui j  < O, v~i < 0 ;  

u i ; <  0, v~j >~0; 
u~j > / 0 ,  v~j < 0 .  

The d i f ference  s c h e m e  under cons idera t ion  p o s s e s s e s  an e r r o r  of the s econd  order  in the s p a c e  coordinates  
and in t ime .  

The s y s t e m  of equations (4.1) can a l so  be r e p r e s e n t e d  in the f o r m  

A n - t r n w  n - ~ ' m  A_ l:~n--tmTM n - ~ ' m  J -  ~n- - lmr~rTn- -2-m 0 +j+t T ~+J ,, 0 7- ~0 vv ~i-I ----- D~j-tm; 
1 1 1 

~ff ? - -~ -m  n - - ~ r a  n--~-ra S n _ t r t  t 
i i+ t  "4- R m ~ i i  + ~ i j - - t  = ii ; 

1 n - - ~ m  
W+~" • + (t . . . . . .  " - - - -  - -  • wi j  ; 

1 

q% = • + (1 • ~ ~ . - l =  - -  3 /  i j  r 

w h e r e  the coe f f i c i ents  A n ' l m  B ~ - l m ,  c .n - lm Drij-lm, s n - l m  m-1  m-2 w n - l m  ~ n - l m  
--ij , _ -ij  - t j  , are  funct ions of w i j  , w i j  , "'ij , "vij �9 

Thus ,  the d i f ference  s c h e m e  (4.2) is a modi f i ca t ion  of the method of the upper re laxat ion  b lock  [14]. 
f i r s t  two equations of  (4.2) are  so lved  by us ing  l inear fac tor i za t ion  [15]. 

It c a n b e  shown that the d i f ference  s c h e m e  (4.1) is s table  and monotonic .  For v = 0 the s c h e m e  (4.1) 
b e c o m e s  

( 4 . 2 )  

The 

I | i I i i 
. . . .  w n - - ~ -  w n _ _ l  

Wfj+t --2W~j + W~ -4- ~j + Wij -- 
h2 2 2h+ xl 
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o r  

where 

i i i 
n - -  n - - -  n - -  

a W i j + {  - b W i j  2 + cWij_2 = _ d, 

u~ ul u_s __ ~1 ul. 
~ = ~ + ~ ;  ~=h~ - 2 h ~ ,  

2ul _[_ b = ~ i; d = (~ + t) W,5-'. 

The condition that the scheme be monotonic imposes the following cons t ra in ts :  

a > O ,  b > O ,  c 2 > 0 ,  b ~ a  + c ,  

and hence it follows that 

(4.3) 

(4.4) 

�9 2 (4 .5 )  = s , ~ " ' - ~ j ~ > o ,  t ,o< T - -  ,. 

If the conditions (4.4) and (4.5) a re  sat isf ied,  it follows by vir tue of the maximum theo rem [15] that the implicit 
difference scheme (4.3) is stable. 

One employs the Woods condition [16] for the boundary condition for  the eddy on the body, 

~ y n - - i m  ~V i~- - tm 

and at every  i teration the co r rec t ing  of the boundary condition for the vor t ic i ty  on the cylinder sur face  is c a r -  
r ied  out by means of the formula  (4.6). Numerical  scanning of the computation region at each t ime step m 
takes place until the convergence condition 

nlaxJ'lhT~f~]n,n ' IAW~rnl}W~j 
,.; I < 1 o - '  

has been satisfied,  where 

A lt.?injm iicnm 1D-n--Ira n m  n m  = - ~  --  - i j  ; AW~j = Wij  - -  W ~  -~'~. 

w 5. To ver i fy  the accuracy  of the numerica l  method used here  a compar i son  was made between the ca l -  
culation resul ts  for ~ = 0 and the exact solution. The highest percentage difference between the numerica l  solu-  
t ion'and the exact one for a network with steps h i =0.033, h2=0.2 and ~ max=6  does not exceed 0.01%. To be 
able to evaluate the effect of the location of the outer boundary on the numer ica l  solution ~ max was varied.  

In the present  work the computations of an unsteady flow past a cylinder which is set instantaneously in mo-  
tion with constant veloci ty were  ca r r i ed  out by using the descr ibed numer ica l  method. Some computation r e -  
salts  are  shown in Figs.  2-6. 

In our calculations the following al ternat ives were  used: Re =31; 40; 100; 550. The resul t s  of the numer -  
ical calculat ions were  compared  with the experimental  resu l t s  obtained in [17]. 

In Fig. 2 the compar ison  resu l t s  a re  shown, the following notation being adopted for the experimental  
points of [17]: 

1 - -  Re = 3 i ; 2 - -  Re = 4 0 ;  3 - -  Re = i00; 4 - -  Re = 550. 

In Fig. 3 the separat ion angle 0 s is shown versus  t ime with instantaneous acce lera t ion  of the cylinder for 
different Reynolds numbers .  

In Fig. 4 the coefficients of f r ic t ion CDf and the coefficients of p r e s s u r e  CDp versus  t ime a re  shown for 
different Re. 

In Fig. 5 the eddy distribution is shown on the cyl inder  surface  at different t ime instants for Re =550, the 
curves  1-4 corresponding to t = 0.75; 1.25; 2.61; 4.01. 

In Fig. 6 the distribution is shown of the dimensionless  p r e s s u r e  2(p-p0) /pu 2 (P0 is the p re s su re  at the 
r e a r  c r i t i ca l  point) on the cylinder surface  at different t ime instants for  Re =550. The carves  1-4 in Fig. 6 
cor respond  to t=1 .25;  1.75; 2.25; 4.01. 
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The following expressions were used for the quantities shown in Figs. 4 and 6: 

2 (p --  Po) 4 ~f [ cOW \ 

4~ .I W (0, ~l, "[) sin ,u~ld~]; CDI = ~ 
0 

t 

CDp = -- ~ ,f P (0, ~l) cos ~ld~l. 
0 

More detailed graphical and tabular resul ts  illustrating the data obtained from the numerical computa- 
tions of the unsteady flow past a cylinder set instantaneously in motion can be found in [18]. 
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